Algoritmos de Escalonamento II

Eduardo Ferreira dos Santos

Ciência da Computação Centro Universitário de Brasília – UniCEUB

Março, 2016

Sumário

Restrições temporais

Escalonamento Taxa Monotônica

Seconda EDF
Seconda EDF

Restrições temporais

Escalonamento Taxa Monotônica

3 Escalonamento EDF

Tarefas de Tempo Real

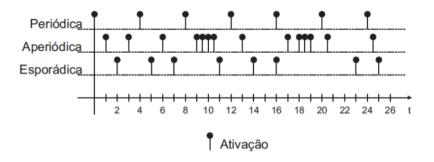


Figura 1.1: Classificação quanto ao tempo de ativação [Chagas, 2016]

Definição de tempo

- As tarefas a serem escalonadas em tempo real serão descritas através da tripla J_i , P_i , C_i , D_i
 - Ji Release Jitter, ou tempo de ativação no pior caso;
 - P_i Período, ou duração da tarefa;
 - Ci Tempo de Computação (execução) da tarefa;
 - Di Deadline, ou tempo máximo que a tarefa pode durar.

Tarefas de Tempo Real I

Legenda

Tempo de Chegada

Figura 1.2: Ciclo de Tarefas 1 [Chagas, 2016]

Tarefas de Tempo Real II

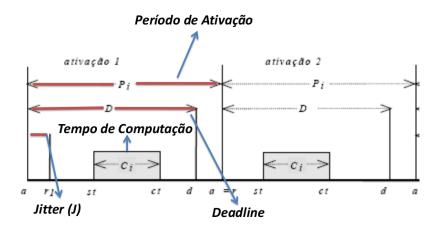


Figura 1.3: Ciclo de Tarefas 2 [Chagas, 2016]

Restrições temporais

Escalonamento Taxa Monotônica

Escalonamento EDF

Premissas do RM [FARINES and MELO, 2000]

- As tarefas são periódicas e independentes;
- ② O deadline de cada tarefa coincide com seu período $(D_i = P_i)$;
- O tempo de computação (C_i) de cada tarefa é conhecido e constante (Worst computation time);
- O tempo de chaveamento entre as tarefas é considerado nulo.

Qual o problema das premissas 1 e 2?

Atribuição de prioridades no RM

- Ordenação baseada nos valores dos períodos:
 - As prioridades decrescem em função do aumento dos períodos;
 - Tarefas mais frequentes têm maior prioridade.
- Condição suficiente para o atendimento das prioridades de *n* tarefas:

$$U = \sum_{i}^{n} \frac{C_{i}}{P_{i}} \le n(2^{\frac{1}{n}} - 1) \tag{1}$$

Equação 1: teste de condição suficiente para atendimento das tarefas, onde U é a utilização de CPU.

Teste de escalonamento RM

- O limite teórico da utilização de CPU é 0,69.
- Quando o período das tarefas coincide com um múltiplo da tarefa mais prioritária, podemos reduzir o teste à uma condição necessária e suficiente.

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i} \le 1 \tag{2}$$

Exemplo 01

Tarefa	P _i	Di	Ci
А	100	100	20
В	150	150	40
С	350	350	100

Tabela 2.1: Restrições de tempo do Exemplo 01

Prioridades

Tarefa	P_i	C_i	pi	U_i
Α	100	20	1	0,2
В	150	40	2	0,267
С	350	100	3	0,286

Tabela 2.2: Cálculo de prioridades do Exemplo 01

Escala RM

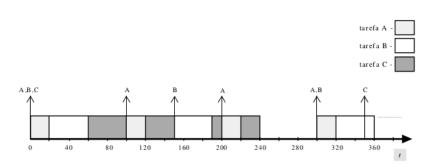


Figura 2.1: Escala RM do Exemplo 01 [FARINES and MELO, 2000]

Exemplo 02

Tarefa	P _i	Di	Ci
А	20	20	10
В	50	50	25

Tabela 2.3: Restrições de tempo do Exemplo 02

Prioridades Exemplo 02

Tarefa	P_i	C_i	p _i	U_i
Α	20	10	1	0,5
В	50	25	2	0,5

Tabela 2.4: Cálculo de prioridades do Exemplo 02

Restrições temporais

Escalonamento Taxa Monotônica

3 Escalonamento EDF

Definição

- Escalonamento Earliest Deadline First: baseado em prioridades;
 - Escalonamento de prioridade dinâmica;
 - 2 Escalonamento on-line.
- Considerado um algoritmo ótimo nos algoritmos de prioridade dinâmica.

Premissas do EDF [FARINES and MELO, 2000]

- As tarefas são periódicas e independentes;
- $oldsymbol{\circ}$ O deadline de cada tarefa coincide com seu período ($D_i=P_i$);
- O tempo de computação (C_i) de cada tarefa é conhecido e constante (Worst computation time);
- 4 O tempo de chaveamento entre as tarefas é considerado nulo.

Atribuição de prioridades no EDF

- Atribuição dinâmica de prioridades com base no deadline absoluto:
 - A tarefa mais prioritária é a que tem o deadline (d_i) mais próximo do tempo atual;
 - Quando chega uma tarefa, a fila de pronto é reordenada com base na nova distribuição de prioridades;
 - A cada ativação de uma tarefa, um novo deadline absoluto é determinado considerando o número de períodos que antecede a atual ativação (k)

$$d_{ik} = kP_i \tag{3}$$

Voltando ao exemplo 02

Tarefa	P_i	Di	Ci
А	20	20	10
В	50	50	25

Tabela 3.1: Restrições de tempo do Exemplo 02

Escalonamento EDF x RM

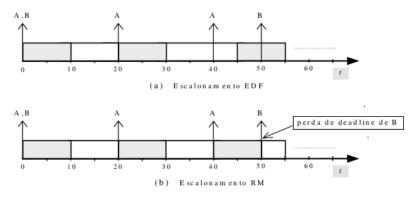


Figura 2.6: Escalas produzidas pelo (a) EDF e (b) RM

Figura 3.1: Comparação do escalonamento EDF com o RM [FARINES and MELO, 2000]

Comparação EDF x RM [FARINES and MELO, 2000]

"A escalonabilidade é também verificada em tempo de projeto, tomando como base a utilização do processador" (EDF).

"O escalonamento Taxa Monotônica ('Rate Monotonic') produz escalas em tempo de execução através de escalonadores preemptivos, dirigidos a prioridades."

- O EDF produz uma melhor utilização de CPU para o exemplo analisado;
- EDF produz menos preempções que RM;
- O RM é mais simples de implementar.

Chagas, F. (2016). Notas de aula do Prof. Fernando Chagas.

FARINES, J. M. and MELO, R. (2000). Sistemas de Tempo Real, volume 1. IME-USP.

OBRIGADO!!! PERGUNTAS???

